储能变流器PCS产品散热结构设计

您所在的位置:网站首页 储能 功率器件 储能变流器PCS产品散热结构设计

储能变流器PCS产品散热结构设计

2023-11-24 02:24| 来源: 网络整理| 查看: 265

图2 风机结构

1.2散热结构设计

本文只针对成套散热结构进行建模,调整风机相对于功率模块进风口的距离,通过仿真模拟出风口风速、散热器温升数据,综合散热器的温升以及结构布置的合理化,得出最优散热布置方案。成套散热结构采用底进风、上出风的方式。风机置于功率模块底部,四周用钣金围成密闭风腔,三个功率模块散热器底部与风腔接触面开有对应方形进风口,每个功率模块散热器顶部开有方形出风口。空气经风机底部导风圈吸入,经风机四周叶片甩出到风腔内,然后通过风腔挤压由顶部功率模块进风口处流入功率模块散热器,最后通过顶部功率模块出风口排出,形成风道回路,如图3所示。

图3 功率模块及散热结构

2 热设计

热量主要通过热传导、热对流、热辐射三种方式传递。

对流散热分为自然对流与强迫对流两种方式。自然对流散热方式,功率模块布局应考虑风路设计要求,对于直齿型散热器,应保证散热器齿槽垂直于水平面。尽可能增加进出口高度差,避免气流短路。强迫对流散热方式,元器件应均匀布置,使风均匀流过每一个发热源;如果发热不均,发热量大的元器件稀疏排列,发热量小的布局紧凑,或增加导流装置,将风有效导入至关键发热元器件中;风道界面尺寸尽可能与风扇出口保持一致,采用直风道,减小局部阻力,避免增加沿程阻力损失。

电子设备主要的失效形式是热失效。所以,对电子设备进行热设计以及热分析,早已引起了国内外研究的重视。在产品的设计阶段对其进行热仿真可以有效的模拟实际的工况,通过对于仿真模型的修改,快速的进行工况切换对比。

本次设计采用强迫风冷进行储能变流器功率模块散热,通过风机使结构内部空气进行流动,冷流体与电子设备内的器件进行热量交换,从而对整个功率模块进行冷却。

3 仿真分析

3.1仿真模型建立

本文根据散热器、风机、功率器件实际规格以及三维建模布局完成仿真模型建立,仿真结构模型如图4。其中,风机位于整个散热结构的底部,由底部进风,通过风腔与顶部散热模块的进风口流经散热器,从而对功率器件进行散热。

图4 仿真结构模型

实际由于功率模块及其散热结构在柜内结构布局的条件影响,本次仿真以风机与功率器件进风口的距离为变量,模拟工况下功率模块的出风口风速及散热器的温升情况。

3.2仿真参数与工况

由于功率模块的散热性能会受到与风机之间的相对距离影响,本次仿真模拟五种不同距离工况下功率模块的出风口风速及散热器的温升情况。仿真参数如表1所示,仿真变量如表2所示。

表1 仿真参数设置

表2 仿真工况

3.3仿真结果分析

五种不同的工况仿真结果数据如表3所示。风机与功率器件进风口的距离200mm、300mm的仿真结果如图5、图6所示。

表3 不同工况下的功率模块出风流速与散热器温升

图5 风机与功率模块进风口间距200mm仿真结果

图6 风机与功率模块进风口间距300mm仿真结果

风机与功率模块进风口间距200mm时,A\C相模组出风口最大风速达到11.96m/s,B相模组出风口最大风速达到8.58m/s,风速最大值集中在出风口边界处;模组散热器温度为71.98℃,温升为31.98℃。

风机与模组进风口间距为300mm时,A\C相模组出风口最大风速达到12.30m/s,B相模组出风口最大风速达到9.38m/s,风速最大值集中在出风口边界处;模组散热器温度为69.6℃,温升为29.6℃。散热器温升最高集中在B相(中间)顶部处。

图7 风机与功率模块不同间距下的散热器温度对比

由于风机通过转轴联动扇叶进行出风,通过上图5、图6可以看出内部流场示意,散热器温升最高集中在B相(中间)顶部处。风机在工作条件下,通过扇叶向四周出风,通过风机罩壳壁面改变风向,因此经过A/C相散热器风量较多,B相散热器风量较少。其次,距离功率器件进风口最远位置的功率器件散热效果较差,因此B相散热器顶部位置功率器件温升最高。

通过模拟五种不同距离的工况,可以看出,风机在与功率模块进风口间距达到400mm时,A/C相出口最大流速达到12.57m/s,B相出口最大流速达到10.9m/s,散热器最高温度达到68.1℃,环境温度为40℃,散热器最大温升达到28.1℃。A/C相与B相出口风速差值为1.67m/s,温升最高点集中在B相散热器顶部功率器件布置处。

4 结论

通过对比五种工况仿真结果表明,在其他条件一定的情况下,风机与功率模块进风口的距离会直接影响到功率器件的散热效果,由于风机布置在进风口底部,通过扇叶向四周出风,通过风机罩壳壁面改变风向导致功率模块的三相散热存在不均匀的现象,随着风机与功率模块进风口的距离不断增加,功率模块的散热效果存在改善,在风机与功率模块进风口的距离间距达到400mm时,散热效果达到最优,综合考量散热结构的尺寸以及散热效果,最终采用功率模块进风口与风机间距400mm方案进行设计。

电池资料

储能行业全套标准 ‍‍‍‍‍‍

2022-03-30

光伏储能一体机结构3D模型

2022-06-15

锂离子电池设计计算模板

2022-03-07

锂电池DFMEA分析表

2021-01-07

锂离子电池全套测试标准

2021-01-02

锂离子电池设计规范书

2020-12-29

锂电池PFMEA表

2020-12-26

新能源汽车换电站3D数据

2020-11-10

新能源车106项试验规范

2020-10-14

44页锂电池检测方法及标准

2020-12-08返回搜狐,查看更多



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3